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Symmetry Analysis of the Vibronic States in the Upper Conical Potential (2A’) of Triplet
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The symmetry properties of the rovibronic resonance states (Slonczewski resonances) supported by an upright
conical potential are investigated. These symmetry properties lead to a useful correlation between states
calculated with and without consideration of the geometrical phase, which can assist in the assignment of
those states. The vibronic resonance states of trip}e(EFA'), which had been studied by us before, have

now been assigned to spectroscopic quantum numbers.

1. Introduction calculation. For triplet B, the conical intersection line appears

at energy values high above thg (X2Z;) + H(?S) dissocia-

tion threshold of the lower sheet, so that the conical resonance
states are embedded in the continuum of the lower sheet. As
discussed in ref 10, based on results obtained by one of us and
Nikitin, > we do not expect such a coupling to continuum states
to have a strong influence on the positions of the resonances.
To be sure, in such a single surface calculation one must take
into account one consequence of the conical intersection, the

Thirty years ago, Schaad and Hicks) a systematic study
of the excited electronic states of;Hdiscovered that the
lowest electronic triplet state of this molecular ion is bound.
Theoretical studies that followed, by Ahlrichs et @lormer
and de Groo#, and Preiskorn et af.yielded the equilibrium
geometry data, harmonic frequencies, and the first, however
incomplete, potential energy surfaté. has only been during
:)hueb”}t;?]setd’tfkl)r;?hg i)?(rass’e::?;u?h%qz?nbdeLyOfSSrzgcgsa?g?éit beengeor.netrical phase..GeolmetricaI phase boundary conditions are
provide complete potential energy surfaces and the first accuratereqLJIreoI f%r_ the Lowbra;c:onal szi\t/r? fulnct;ons_ to counftera;:_t th‘;
quantitative data on the rovibronic structure of H its lowest corresponaing phase change ot the electronic wave function.

. o L . rovibrational calculation without geometrical phase boundary
triplet state, &, . I”pIEt H; is subject to a strong Jahn Teller conditions (NGP calculation) can nevertheless be useful to assist
effect, and the &, state forms the lower sheet of a double- o assignment of the proper eigenvalues obtained from a
valued potential energy surface. The upper sheet potéhtial .1cjation that takes into account the geometrical phase (GP
resembles an upright cone at nuclear arrangements close to that cyation), as the two sets of eigenvalues are correlated.
of an equilateral triangle, where the two potentials become For the calculation of the vibrational states we employed our
degenerate. L . latest DMBE surfacé! Two different methods were then used,

In recent publication&!%1! we explored the analytical

representation of the two sheets by double many-body expansio both based on hyperspherical coordinates, since such coordinates
e ermit an accurate description of pseudorotation. While the NGP
(DMBE) theory!213|n the most recent of thedéan improved b P P

i ) calculations were performed with the method of hyperspherical
representation of the two sheets was obtained, based on Al armonics® the GP calculations were based on the mixed grid

extenqled set of ab initio e!ectro_nlc energy data and a novelyy,qiq method described in ref 17. As in our previous calculations,
analytical DMBE gppr'oach, n .Wh'?h the degeneracy of the WO 1 iclear masses were used as required in the adiabatic separation
sheets at the conical intersection is guarantged by CONSUUCHON ¢ 1y clear and electronic motions. For a discussion of mass
In the present paper we report the calculation of the vibronic effects see refs 18 and 19 and references therein. The hyper-

states ”21 th? quIer conical ?Oten\tl'?l ss preldlcted frpm dt?r? spherical basis functions of the two methods mentioned above
improved potential energy surface. Vve have also examined the., , o symmetrized with respect to an exchange of identical

symmetry properties of these states and assigned them Withnuclei and the inversion of the coordinate system. Thus, the

Spectroscopic quantum numbers. hyperspherical methods allow separate calculations to be carried
out for each of the irreducible representations of the three-
particle permutation-inversion grot?! 3) x I. This group

The vibronic states supported by the conical potential are is isomorphic with theDs, point group and has six irreducible
resonance states, sometimes known as Slonczewski resoffancesrepresentations. Thke= 0 functions are symmetric with respect
which decay nonadiabatically to the lower sheet of the potential to the inversion of the coordinate system, the remaining
energy surface. To determine the positions and lifetimes of theseirreducible representations being;,AA; and E'. The wave
resonance states, a vibronic calculation on the two coupledfunctions of the physically allowed states for a system of three
potential energy surfaces would be required. In the present casgrotons (fermions) must be antisymmetric with respect to a
of triplet Hy, however, one should be able to obtain accurate permutation of two protons and thus transform gslA ref 10
estimates of the resonance positions alone from a single surfaceve have examined the symmetry properties of the electronic
and the nuclear spin parts of the total wave function. The
* Corresponding author. E-mail: varandas@qtvs1.qui.uc.pt. electronic symmetry is A while the nuclear spin symmetry is
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2. Vibronic Cone Sates and Their Symmetry Properties
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A] for the spin quartet state arifl for the spin doublet state.
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TABLE 1: Symmetry Classification of the Spectroscopic

Examination of the direct products of the spin and spatial parts Functions®

of the total wave function shows that the physically allowed
vibrational wave functions are those of, And E' symmetry,
which are to be combined with the quartet nuclear spin function
and the doublet nuclear spin function, respectively.

In spectroscopic notation, the rovibronic states are represented

as linear combinations of

(W= |0, O IKE (1)
Here, v1 is the symmetric stretch quantum numberthat of
the degenerate vibration, ahthe associated vibrational angular
momentum which takes the values

=0, 0v,—2,.. (2)
As usual,J is the total angular momentum arkdts internal
projection. Finally ¢ is the geometrical phase factor, written
in its most basic from. For a general discussion of this factor,

U

see ref 22. The electronic spin has been neglected in the above

equations. Symmetrization of the primitive basis functions eq
1 leads to the Wang-type linear combinati&ns

W, = 7]'§(|U1 vy, | 4+ a0 IKH
(—1)lvy v, — 1 = a0JI = kI (3)

which are irreducible representations &3) x I. If no
geometrical phase is preseatiakes the value. = 0, otherwise
it is oo = 1/2. In the latter casd,is thus replaced by the half
integer pseudorotational quantum nuniber

. 1
i=1+5 @)
The symmetry of the vibronic states, i.e., thes O states, is
determined entirely by the pseudorotational quantum nu@tber.
In the NGP case, the function¥.Owith || = 0, 3, . . .
transform as Aand A,, the others a&'. In the GP case, it is
the states withj| = 3/2,9/2 .. .or 2j| = 3(2 + 1),i =0, 1,
... that transform as ‘#A,, pairs, while the others transform as
E'. If rotation is excited, the quantum numbérandk are not
conserved separately, as shown by Hodgand by WatsoR!
To account for this, they introduced a new good quantum

number,G = |k — I|. In the presence of a geometrical phase,
the corresponding half integer good quantum number bec8mes
G=lk—jl| ®)

The rovibronic wave functions are eigenfunctions of the parity
operator, which leads to the prime or double prime classification.
Parity is determined by the parity & the projection of the
angular momentum operat$tThe vibronic states considered
in the present article obviously hake= 0 and thus positive
parity. In this caseG = |j| = |l| + 1/2. The transformation
properties of the functions defined in eq 3 are shown in Table
1. They will form the basis of our assignment procedure.

3. Assignment of the Vibronic Cone States

We will first discuss the case in which the geometrical phase
is neglected. With symmetry classification of the spectroscopic

(-1f=1 (1f=-1
G=0,3, AJA, AYIAY
G=1,4,. E E"
G=2,5,... E =
G=3/2,92.. AJA, AYIAY
G=12,7/2... E =
G=5/2,11/2. .. E E"

aInteger values o6, with oo = 0, correspond to the NGP case, while
half integer values o6, with oo = 1/2, correspond to the GP case.

TABLE 2: Vibronic Energy Values, in cm 1, of the NGP
States and Their Assignmenty

(v1, 1)) (v1, 23) i ' [ E
(0, ) 0 3702.78
1,0 1 4357.46
(2, 0) 2 4966.61

(0, 1) 0 5515.15
(3,0 3 5526.50
4, ®) 4 6032.78

(1, 1 1 6036.70
5, ) 5 6480.16

2, 1) 2 6499.91
(0, ) 6 6568.21

(0, 2 3 6771.02
(6,0 7 6862.19

(3, 1 4 6896.82
1,2 8 6964.81

1,2 5 7144.82
(7, 0) 9 7170.84

4, 1 6 7216.75
2,2 10 7280.04
8,0 11 7396.62

2,2 7 7413.77

(5,11 8 7434.22

(0,3 9 7448.06
(3,2 12 7493.15
9, ) 13 7534.01

(3,2 10 7553.77
@, 14 7574.25
(10, @) 15 7586.68

(6, 1Y 11 7587.86
aData are with respect to the potential minimum.

of vo and|l| = 3, as such states would form af/A, pair. The

states in the Acolumn are thus characterized bzyl,(vg') =
(v1, 0°) and (1, 2°), those of theE' column by ¢4, 1%), (v1, 22),
and possibly €1, 31). The lowest states in thejAolumn,i =
0, . .. 4, can now beeadily assigned tovf = i, 0°). The
hyperspherical states= 5, 6 are close in energy, but, judging
from the energy differences in the progressions of the lower
members, we conclude that it is the state with 5 that
corresponds to (5,°). The state with = 6 must belong to a
different series, and we assign it to (0).2The higher members
of the two families of statesy{, 0°) and {1, 2°) can now be
identified securely, except perhaps fer 14 andi = 15, which
are separated by only 12 cf Since there is no reason why
the two series should cross, we made the assignments as shown
in Table 2. Note that all these states are unphysical, since they
violate the antisymmetry principle.

The states oE' symmetry, which are physically allowed, are
now assigned with the same strategy. Identifying the three lowest
hyperspherical states without problem tq,(1%), »; =0, 1, 2

states at hand, Table 1, the spectroscopic assignment of theand observing their energy differences, we find ivat3 must

calculated states, Table 2, is now fairly straightforward. Looking

belong to a new family and thus assign it as (§), 2Ve now

at the latter table, we note the absence of states with symmetryeasily follow the vibrational stacks of the two families;,(11)

Aj. This shows that there are no states with 3-fold excitation

and @1, 29), until we find three states close in energys 7, 8,



Rovibronic Resonance State Symmetry

9, one of which must belong to a new family. With careful
consideration this state is identified ias 9, and we assign it
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TABLE 3: Vibronic Energy Values, in cm 1, of the GP
States and Their Assignment3

as (0,3). . . o) @) 0 A i A i E
_ The_ algorithm _applle_d h_e_re for '_[he assignment of the ©,07) 0 4700.90
vibrational states is a simplified version of the more general (1, 049) 1 528884
algorithm for the semiautomatic assignment of rovibrational (2,049 2 5826.05
states developed by one of #syhich has been applied to;H (0,199 0 6106.55
and its isotopomers in the electronic ground $fat&33 and to 0, %9 o 0 6300.74
H; in the lowest triplet staté’. It is based on the exact ;g 3.0 1 6562.47 3 630725
symmetry, i.e., permutation inversion symmetry, of the spec- (4, 0V2) 4  6725.85
troscopic states and on the recognition of vibrational and (1, 13?3 1 6750.44
rotational progression patterns and has been developed to permit(2, *?) 2 6950.69
assignments when wave functions are not easily accessible, as (g’ Sllg)) 2 Sg?gﬂ
itis the case in our present implementation of the hyperspherical , 4 ' 2 712924 :
harmonics method. Note that no fit to energy eigenvalues of a (3’ 137 3 7250.31
phenomenological Hamiltonian is required. This is a useful (0, 27) 7 7297.96
feature, as frequently such phenomenological expansions con- (1,22 8  7315.96
verge only slowly. In the present case, it is possible to fit the O 0*9) 9 733911
vibrational stretch progressions of eaeh, () family separately 8 13,2 4 747073 3 742118
if the lowest members of the series, which are most strongly " (1, 22 ’ 10 750357
affected by the conical intersection, are excluded. The expansion (7, 042) 11  7519.49
in terms of the quantum numbey is then (0, 3% 5 7559.94
. (5, 137 ” 6 7564.94 12 757457
— i 2 .
Evz,l(ul) - I;Cuz,l,i U1 (6) gzz 2/2 13 7585.88
] ) ] @ Data are with respect to the potential minimum.
Note that due to the conical behavior of the potential, the zero-
point energy cannot be approximated®ag(0) ~ 1/2hw,, and 8000 10,09 ”
a zero-order term is required explicitly in eq 6. Though these . 1 <?.»9f’2.7>1—:: ............... TS
fits are not powerful enough to distinguish between close lying SEO; — “‘"’iﬁ?
states near the dissociation thresholds, they otherwise confirm 7000 - (s,0°> &0
our assignments. Since all vibrational states up to the dissocia- ' @0
tion threshold have already been assigned, we do not present’_ 6590 1 0" T
the explicit values of the expansion coefficients. E 6000 - 0%

As discussed above, the NGP states presented in Table 2 haveg; @0 &
no physical meaning, since they were calculated with inap- & 5500 [ 21 60" .
propriate cyclic boundary conditions. They are nevertheless & o Lo
useful as they can be assigned easily, and with their identifica- 000 [ *: 2% 0
tion at hand the spectroscopic assignment of the true states, i.e., 4500 | | . '
those calculated with the correct cyclic boundary conditions to A 0
ensure the geometrical phase, is facilitated. When the geo- 4000
metrical phase effect is taken into account, the quantum number [ *» @O

of the vibrational angular momenturiy,has to be modified to NGP GP

obtain the half integer pseudorotational quantum nuAthr Figure 1. Correlation of they, = 0 states calculated without (left)
= |l + 1/2. The symmetry of the vibronic GP states is and with (right) inclusion of the geometrical phase. The dissociation
determined by this quantum number, as summarized in Tableenergy Eass= 7591.63 cm’) is indicated by a broken line.

1.

These symmetry considerations, together with the spectro-Symmetry have an even excitation, (= 0, 2) of this mode.
scopic identification of the NGP states, can now be used to The lowest fiveE' states are now readily assigned as¥ i,
assign the GP states in Table 3. It is now clear that thd)A 09 with i = 0, . . . 4. Byanalyzing the energy differences
states must have an odd valuesef They are thus derived from  between consecutive states of this family, we can identify the
the appropriate NGP states Bf symmetry. The spectroscopic ~ States with = 6, 9, 11 asy = 5, 6, 7, respectively. The state
labels of the GP states are;( Ugl) = (v1, 13?) or (11, 3*?). with i = 5, which was left over, must be the lowest member of

Fori =0, . . . 4, theassignment is straightforward and we @ new family, (0, 29). Of the state$ = 7 andi = 8 one must
obtain ¢y = i, 192 Of the A, states withi = 5 andi = 6, one  be (1, 29, the other (0, 2?). The assignments that we have
must be (5, ¥?) and the other (0,%#). As they are separated made for these states seem the most reasonable, since also in
by only 5 cnT, we cannot assign them uniquely. The assign- the NGP case (0,22is below (1, 2). The assignments that we
ments that we propose must be understood as tentative assignPropose for the remaining states= 10, 12, 13 are based on
ments. Note that the 'Astates withi > 4 lack their A this choice.
counterparts, as such states would be in the continuum. Judging Our results are displayed graphically in Figures3l These
from the lower members, the splitting between the aad figures show the correlation between the NGP and the GP states

corresponding Astates is of the order of 200 crh As in the
NGP case, states of}/Asymmetry are unphysical.

While GP states of A, symmetry arise due to an odd
excitation of the degenerate modg (v» = 1, 3), those ofE'

for the three families of vibronic statesy( v» = 0), (v1, v2 =
1), and (/1, Uy = 2)

Finally, the eigenvalues of the vibronic states obtained here
can be compared with those obtained by us previdtisly a
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Figure 2. Correlation of thev, = 1 states calculated without (left)
and with (right) inclusion of the geometrical phase. The NGP states
have E' symmetry and are split into an M\, pair when the
geometrical phase is taken into account.
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Figure 3. Correlation of thev, = 2 states calculated without (left)
and with (right) inclusion of the geometrical phase. Note the different
scale of the ordinate compared with Figures 1 and 2.
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Figure 4. Energy differenceE = E(ref 10) — E(this work) of the

positions of the resonance states calculated using two different potential
energy surfaces. The full lines refer to the GP states, while the broken

lines refer to the NGP states.

different potential energy surface. Figure 4 shows that the two

surfaces are equivalent over the whole energy region. The

differencesAE = E(Ref 10) — E(this work of the calculated
vibronic states have a mean valtdE = 0.213 cm! and a

Viegas et al.

standard deviatior = 1.077 cntl. They are thus well within
the error bounds of the fits of the ab initio electronic energy
data &5.5 cnTl) and are not significant with respect to the
accuracy of the electronic energy data themselves.

4., Conclusions

In the present work we have determined the positions of the
vibronic resonance states in the upper conical potential of triplet
Hg, using a new DMBE potential energy surface. The sym-
metry properties of these states were studied and spectroscopic
assignments were made. We plan to develop further our GP
computer code to permit calculations for nonzero angular
momentum and eventually also to perform coupled surface
calculations.
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