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The symmetry properties of the rovibronic resonance states (Slonczewski resonances) supported by an upright
conical potential are investigated. These symmetry properties lead to a useful correlation between states
calculated with and without consideration of the geometrical phase, which can assist in the assignment of
those states. The vibronic resonance states of triplet H3

+ (23A′), which had been studied by us before, have
now been assigned to spectroscopic quantum numbers.

1. Introduction

Thirty years ago, Schaad and Hicks,1 in a systematic study
of the excited electronic states of H3

+, discovered that the
lowest electronic triplet state of this molecular ion is bound.
Theoretical studies that followed, by Ahlrichs et al.,2 Wormer
and de Groot,3 and Preiskorn et al.,4 yielded the equilibrium
geometry data, harmonic frequencies, and the first, however
incomplete, potential energy surface.3 It has only been during
the past three years, that a number of articles have been
published, by the present authors5-7 and by Sanz et al.,8,9 that
provide complete potential energy surfaces and the first accurate
quantitative data on the rovibronic structure of H3

+ in its lowest
triplet state, a3Σu

+. Triplet H3
+ is subject to a strong Jahn Teller

effect, and the a3Σu
+ state forms the lower sheet of a double-

valued potential energy surface. The upper sheet potential10

resembles an upright cone at nuclear arrangements close to that
of an equilateral triangle, where the two potentials become
degenerate.

In recent publications,6,10,11 we explored the analytical
representation of the two sheets by double many-body expansion
(DMBE) theory.12,13In the most recent of these,11 an improved
representation of the two sheets was obtained, based on an
extended set of ab initio electronic energy data and a novel
analytical DMBE approach, in which the degeneracy of the two
sheets at the conical intersection is guaranteed by construction.
In the present paper we report the calculation of the vibronic
states in the upper conical potential as predicted from the
improved potential energy surface. We have also examined the
symmetry properties of these states and assigned them with
spectroscopic quantum numbers.

2. Vibronic Cone Sates and Their Symmetry Properties

The vibronic states supported by the conical potential are
resonance states, sometimes known as Slonczewski resonances,14

which decay nonadiabatically to the lower sheet of the potential
energy surface. To determine the positions and lifetimes of these
resonance states, a vibronic calculation on the two coupled
potential energy surfaces would be required. In the present case
of triplet H3

+, however, one should be able to obtain accurate
estimates of the resonance positions alone from a single surface

calculation. For triplet H3
+, the conical intersection line appears

at energy values high above the H3
+(X2Σg

+) + H(2S) dissocia-
tion threshold of the lower sheet, so that the conical resonance
states are embedded in the continuum of the lower sheet. As
discussed in ref 10, based on results obtained by one of us and
Nikitin,15 we do not expect such a coupling to continuum states
to have a strong influence on the positions of the resonances.
To be sure, in such a single surface calculation one must take
into account one consequence of the conical intersection, the
geometrical phase. Geometrical phase boundary conditions are
required for the rovibrational wave functions to counteract the
corresponding phase change of the electronic wave function. A
rovibrational calculation without geometrical phase boundary
conditions (NGP calculation) can nevertheless be useful to assist
the assignment of the proper eigenvalues obtained from a
calculation that takes into account the geometrical phase (GP
calculation), as the two sets of eigenvalues are correlated.

For the calculation of the vibrational states we employed our
latest DMBE surface.11 Two different methods were then used,
both based on hyperspherical coordinates, since such coordinates
permit an accurate description of pseudorotation. While the NGP
calculations were performed with the method of hyperspherical
harmonics,16 the GP calculations were based on the mixed grid
basis method described in ref 17. As in our previous calculations,
nuclear masses were used as required in the adiabatic separation
of nuclear and electronic motions. For a discussion of mass
effects see refs 18 and 19 and references therein. The hyper-
spherical basis functions of the two methods mentioned above
can be symmetrized with respect to an exchange of identical
nuclei and the inversion of the coordinate system. Thus, the
hyperspherical methods allow separate calculations to be carried
out for each of the irreducible representations of the three-
particle permutation-inversion group20,21 S(3) × I. This group
is isomorphic with theD3h point group and has six irreducible
representations. TheJ ) 0 functions are symmetric with respect
to the inversion of the coordinate system, the remaining
irreducible representations being A′1, A′2 and E′. The wave
functions of the physically allowed states for a system of three
protons (fermions) must be antisymmetric with respect to a
permutation of two protons and thus transform as A′2. In ref 10
we have examined the symmetry properties of the electronic
and the nuclear spin parts of the total wave function. The
electronic symmetry is A′1, while the nuclear spin symmetry is* Corresponding author. E-mail: varandas@qtvs1.qui.uc.pt.
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A′1 for the spin quartet state andE′ for the spin doublet state.
Examination of the direct products of the spin and spatial parts
of the total wave function shows that the physically allowed
vibrational wave functions are those of A′2 and E′ symmetry,
which are to be combined with the quartet nuclear spin function
and the doublet nuclear spin function, respectively.

In spectroscopic notation, the rovibronic states are represented
as linear combinations of

Here,V1 is the symmetric stretch quantum number,V2 that of
the degenerate vibration, andl the associated vibrational angular
momentum which takes the values

As usual,J is the total angular momentum andk its internal
projection. Finally,eiRφ is the geometrical phase factor, written
in its most basic from. For a general discussion of this factor,
see ref 22. The electronic spin has been neglected in the above
equations. Symmetrization of the primitive basis functions eq
1 leads to the Wang-type linear combinations23

which are irreducible representations ofS(3) × I. If no
geometrical phase is present,R takes the valueR ) 0, otherwise
it is R ) 1/2. In the latter case,l is thus replaced by the half
integer pseudorotational quantum number24

The symmetry of the vibronic states, i.e., theJ ) 0 states, is
determined entirely by the pseudorotational quantum number.25

In the NGP case, the functions|Ψ(〉 with |l| ) 0, 3, . . .
transform as A′1 and A′2, the others asE′. In the GP case, it is
the states with|j| ) 3/2, 9/2, . . . or 2|j| ) 3(2i + 1), i ) 0, 1,
. . . that transform as A′1/A′2 pairs, while the others transform as
E′. If rotation is excited, the quantum numbersl andk are not
conserved separately, as shown by Hougen26 and by Watson.27

To account for this, they introduced a new good quantum
number,G ) |k - l|. In the presence of a geometrical phase,
the corresponding half integer good quantum number becomes23

The rovibronic wave functions are eigenfunctions of the parity
operator, which leads to the prime or double prime classification.
Parity is determined by the parity ofk, the projection of the
angular momentum operator.28 The vibronic states considered
in the present article obviously havek ) 0 and thus positive
parity. In this case,G ) |j| ) |l| + 1/2. The transformation
properties of the functions defined in eq 3 are shown in Table
1. They will form the basis of our assignment procedure.

3. Assignment of the Vibronic Cone States

We will first discuss the case in which the geometrical phase
is neglected. With symmetry classification of the spectroscopic
states at hand, Table 1, the spectroscopic assignment of the
calculated states, Table 2, is now fairly straightforward. Looking
at the latter table, we note the absence of states with symmetry
A′2. This shows that there are no states with 3-fold excitation

of ν2 and|l| ) 3, as such states would form an A′1/A′2 pair. The
states in the A′1 column are thus characterized by (V1, V2

|l|) )
(V1, 0°) and (V1, 2°), those of theE′ column by (V1, 11), (V1, 22),
and possibly (V1, 31). The lowest states in the A′1 column, i )
0, . . . 4, can now bereadily assigned to (V1 ) i, 0°). The
hyperspherical statesi ) 5, 6 are close in energy, but, judging
from the energy differences in the progressions of the lower
members, we conclude that it is the state withi ) 5 that
corresponds to (5, 0°). The state withi ) 6 must belong to a
different series, and we assign it to (0, 2°). The higher members
of the two families of states, (V1, 0°) and (V1, 2°) can now be
identified securely, except perhaps fori ) 14 andi ) 15, which
are separated by only 12 cm-1. Since there is no reason why
the two series should cross, we made the assignments as shown
in Table 2. Note that all these states are unphysical, since they
violate the antisymmetry principle.

The states ofE′ symmetry, which are physically allowed, are
now assigned with the same strategy. Identifying the three lowest
hyperspherical states without problem to (V1, 11), V1 ) 0, 1, 2
and observing their energy differences, we find thati ) 3 must
belong to a new family and thus assign it as (0, 22). We now
easily follow the vibrational stacks of the two families, (V1, 11)
and (V1, 22), until we find three states close in energy,i ) 7, 8,

|Ψ〉 ) |V1V2l〉 |Jk〉eiRφ (1)

l ) V2, V2 - 2, . . .- V2 (2)

|Ψ(〉 ) 1
x2

(|V1 V2, l + R〉 |Jk〉 (

(-1)J|V1 V2, - l - R〉 |J - k〉) (3)

|j| ) |l| + 1
2

(4)

G ) |k - j| (5)

TABLE 1: Symmetry Classification of the Spectroscopic
Functionsa

(-1)k) 1 (-1)k) -1

G ) 0, 3, . . . A′1/A′2 A′′1/A′′2
G ) 1, 4, . . . E′ E′′
G ) 2, 5, . . . E′ E′′
G ) 3/2, 9/2, . . . A′1/A′2 A′′1/A′′2
G ) 1/2, 7/2, . . . E′ E′′
G ) 5/2, 11/2, . . . E′ E′′

a Integer values ofG, with R ) 0, correspond to the NGP case, while
half integer values ofG, with R ) 1/2, correspond to the GP case.

TABLE 2: Vibronic Energy Values, in cm -1, of the NGP
States and Their Assignmentsa

(V1, V2
|l|) (V1, V2

|l|) i A ′1 i E′
(0, 00) 0 3702.78
(1, 00) 1 4357.46
(2, 00) 2 4966.61

(0, 11) 0 5515.15
(3, 00) 3 5526.50
(4, 00) 4 6032.78

(1, 11) 1 6036.70
(5, 00) 5 6480.16

(2, 11) 2 6499.91
(0, 20) 6 6568.21

(0, 22) 3 6771.02
(6, 00) 7 6862.19

(3, 11) 4 6896.82
(1, 20) 8 6964.81

(1, 22) 5 7144.82
(7, 00) 9 7170.84

(4, 11) 6 7216.75
(2, 20) 10 7280.04
(8, 00) 11 7396.62

(2, 22) 7 7413.77
(5, 11) 8 7434.22
(0, 31) 9 7448.06

(3, 20) 12 7493.15
(9, 00) 13 7534.01

(3, 22) 10 7553.77
(4, 20) 14 7574.25
(10, 00) 15 7586.68

(6, 11) 11 7587.86

a Data are with respect to the potential minimum.
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9, one of which must belong to a new family. With careful
consideration this state is identified asi ) 9, and we assign it
as (0, 31).

The algorithm applied here for the assignment of the
vibrational states is a simplified version of the more general
algorithm for the semiautomatic assignment of rovibrational
states developed by one of us,29 which has been applied to H3

+

and its isotopomers in the electronic ground state19,30-33 and to
H3

+ in the lowest triplet state,7 a3Σu
+. It is based on the exact

symmetry, i.e., permutation inversion symmetry, of the spec-
troscopic states and on the recognition of vibrational and
rotational progression patterns and has been developed to permit
assignments when wave functions are not easily accessible, as
it is the case in our present implementation of the hyperspherical
harmonics method. Note that no fit to energy eigenvalues of a
phenomenological Hamiltonian is required. This is a useful
feature, as frequently such phenomenological expansions con-
verge only slowly. In the present case, it is possible to fit the
vibrational stretch progressions of each (V2, l) family separately
if the lowest members of the series, which are most strongly
affected by the conical intersection, are excluded. The expansion
in terms of the quantum numberV1 is then

Note that due to the conical behavior of the potential, the zero-
point energy cannot be approximated asEV2,l(0) ≈ 1/2 pω1, and
a zero-order term is required explicitly in eq 6. Though these
fits are not powerful enough to distinguish between close lying
states near the dissociation thresholds, they otherwise confirm
our assignments. Since all vibrational states up to the dissocia-
tion threshold have already been assigned, we do not present
the explicit values of the expansion coefficients.

As discussed above, the NGP states presented in Table 2 have
no physical meaning, since they were calculated with inap-
propriate cyclic boundary conditions. They are nevertheless
useful as they can be assigned easily, and with their identifica-
tion at hand the spectroscopic assignment of the true states, i.e.,
those calculated with the correct cyclic boundary conditions to
ensure the geometrical phase, is facilitated. When the geo-
metrical phase effect is taken into account, the quantum number
of the vibrational angular momentum,l, has to be modified to
obtain the half integer pseudorotational quantum number24 |j|
) |l| + 1/2. The symmetry of the vibronic GP states is
determined by this quantum number, as summarized in Table
1.

These symmetry considerations, together with the spectro-
scopic identification of the NGP states, can now be used to
assign the GP states in Table 3. It is now clear that the A′1/A′2
states must have an odd value ofV2. They are thus derived from
the appropriate NGP states ofE′ symmetry. The spectroscopic
labels of the GP states are (V1, V2

|j|) ) (V1, 13/2) or (V1, 33/2).
For i ) 0, . . . 4, theassignment is straightforward and we

obtain (V1 ) i, 13/2). Of the A′1 states withi ) 5 andi ) 6, one
must be (5, 13/2) and the other (0, 33/2). As they are separated
by only 5 cm-1, we cannot assign them uniquely. The assign-
ments that we propose must be understood as tentative assign-
ments. Note that the A′1 states with i > 4 lack their A′2
counterparts, as such states would be in the continuum. Judging
from the lower members, the splitting between the A′1 and
corresponding A′2 states is of the order of 200 cm-1. As in the
NGP case, states of A′1 symmetry are unphysical.

While GP states of A′1/A′2 symmetry arise due to an odd
excitation of the degenerate modeν2 (V2 ) 1, 3), those ofE′

symmetry have an even excitation (V2 ) 0, 2) of this mode.
The lowest fiveE′ states are now readily assigned as (V1 ) i,
01/2) with i ) 0, . . . 4. Byanalyzing the energy differences
between consecutive states of this family, we can identify the
states withi ) 6, 9, 11 asV1 ) 5, 6, 7, respectively. The state
with i ) 5, which was left over, must be the lowest member of
a new family, (0, 21/2). Of the statesi ) 7 andi ) 8 one must
be (1, 21/2), the other (0, 25/2). The assignments that we have
made for these states seem the most reasonable, since also in
the NGP case (0, 22) is below (1, 2°). The assignments that we
propose for the remaining statesi ) 10, 12, 13 are based on
this choice.

Our results are displayed graphically in Figures 1-3. These
figures show the correlation between the NGP and the GP states
for the three families of vibronic states, (V1, V2 ) 0), (V1, V2 )
1), and (V1, V2 ) 2).

Finally, the eigenvalues of the vibronic states obtained here
can be compared with those obtained by us previously10 on a

EV2,l
(V1) ) ∑

i)0

cV2,l,i
V1

i (6)

TABLE 3: Vibronic Energy Values, in cm -1, of the GP
States and Their Assignmentsa

(V1, V2
|j|) (V1, V2

|j|) i A′1 i A′2 i E′
(0, 01/2) 0 4700.90
(1, 01/2) 1 5288.84
(2, 01/2) 2 5826.05

(0, 13/2) 0 6106.55
(0, 13/2) 0 6300.74

(3, 01/2) 3 6307.25
(1, 13/2) 1 6562.47

(4, 01/2) 4 6725.85
(1, 13/2) 1 6750.44
(2, 13/2) 2 6950.69

(0, 21/2) 5 6985.17
(5, 01/2 ) 6 7073.41

(2, 13/2) 2 7129.24
(3, 13/2) 3 7259.31

(0, 25/2) 7 7297.96
(1, 21/2) 8 7315.96
(6, 01/2) 9 7339.11

(3, 13/2) 3 7421.18
(4, 13/2) 4 7470.73

(1, 25/2) 10 7503.57
(7, 01/2) 11 7519.49

(0, 33/2) 5 7559.94
(5, 13/2) 6 7564.94

(2, 21/2) 12 7574.57
(2, 25/2) 13 7585.88

a Data are with respect to the potential minimum.

Figure 1. Correlation of theV2 ) 0 states calculated without (left)
and with (right) inclusion of the geometrical phase. The dissociation
energy (Ediss ) 7591.63 cm-1) is indicated by a broken line.
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different potential energy surface. Figure 4 shows that the two
surfaces are equivalent over the whole energy region. The
differences∆E ) E(Ref. 10) - E(this work) of the calculated
vibronic states have a mean value∆h E ) 0.213 cm-1 and a

standard deviationσ ) 1.077 cm-1. They are thus well within
the error bounds of the fits of the ab initio electronic energy
data (≈5.5 cm-1) and are not significant with respect to the
accuracy of the electronic energy data themselves.

4. Conclusions

In the present work we have determined the positions of the
vibronic resonance states in the upper conical potential of triplet
H3

+, using a new DMBE potential energy surface. The sym-
metry properties of these states were studied and spectroscopic
assignments were made. We plan to develop further our GP
computer code to permit calculations for nonzero angular
momentum and eventually also to perform coupled surface
calculations.
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Figure 2. Correlation of theV2 ) 1 states calculated without (left)
and with (right) inclusion of the geometrical phase. The NGP states
have E′ symmetry and are split into an A′1/A′2 pair when the
geometrical phase is taken into account.

Figure 3. Correlation of theV2 ) 2 states calculated without (left)
and with (right) inclusion of the geometrical phase. Note the different
scale of the ordinate compared with Figures 1 and 2.

Figure 4. Energy differences∆E ) E(ref 10) - E(this work) of the
positions of the resonance states calculated using two different potential
energy surfaces. The full lines refer to the GP states, while the broken
lines refer to the NGP states.
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